Feature Identification, Solution Disassembly and Cost Comparison of Intelligent Driving under Different Technical Routes

Author:

Liu Zongwei12,Zhang Wang12ORCID,Tan Hong12,Zhao Fuquan12

Affiliation:

1. State Key Laboratory of Automobile Safety and Energy, Tsinghua University, Beijing 100084, China

2. Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China

Abstract

Technical route decision making of intelligent driving has always been the focus of attention of automotive enterprises and even the industry. Firstly, this study combs the main technical routes of intelligent driving at different levels from three dimensions: development strategy, intelligence allocation and sensor combination. Then, the methodology of technical component combination is designed to disassemble different technical routes into corresponding technical component combinations. Finally, an improved evaluation model of total cost of ownership of intelligent driving is developed and the total cost of ownership of intelligent driving system under different technical routes is compared. For the development strategy, even if the function superposition can follow some research and development achievements of low-level intelligent driving, scenario-driven is still the option with lower cost and better sustainability. For intelligence allocation, collaborative intelligence can effectively reduce the cost of the vehicle compared with single-vehicle intelligence by up to 46%, but the cost reduction depends on the original on-board hardware. For sensor combination, the multi-source fusion always has the cost advantage compared with vision-only, but the advantage is more obvious in the medium-level and high-level stage of single-vehicle intelligence.

Funder

National Natural Science Foundation of China

Tsinghua-Toyota Joint Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3