Research on Influences of Ultrasonic Vibration Agitation Stirring on Carbonation Resistance of Cement-Based Materials after Absorption of CO2

Author:

Liu Lili1,Ji Yongsheng2ORCID,Gao Furong2,Xu Zhishan2

Affiliation:

1. School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221000, China

2. Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

To disclose influences of ultrasonic vibration agitation on the carbonation resistance of cement-based materials after absorption of CO2, the variation laws in internal carbonization zone were explored by the testing carbonization depth and carbonization range (pH variation range) of cement mortar after CO2 absorption at different ages. Results demonstrated that when CO2 absorption volumes of the cement mortar before carbonization were 0.44%, 0.88%, 1.32%, 1.76%, and 2.20% (28 d), the carbonization depth under ultrasonic vibration decreased by 5.5%, 12.3%, 21.7%, 20.7%, and 26.7% compared to those under mechanical stirring, respectively. When the ultimate CO2 absorption volume increased to 2.2% of cement mass, the extended degree of cement mortar was 103.23 mm, which decreased by 5.4% compared to that before CO2 absorption. pH variation values of the carbonization range under ultrasonic vibration presented a rising trend with the increase of CO2 absorption volume of cement mortar before carbonation. This indicated that, with the increase of CO2 absorption volume of cement mortar before carbonation increases under ultrasonic vibration, the carbonization process of the hardened body of cement mortar might be decelerated to some extent. Additionally, changes in internal composition and physical images of cement-based materials after absorption of CO2 were analyzed through microtest means like SEM and XRD. A carbonation resistance model was constructed, thus enabling disclosure of the variation mechanism of carbonation resistance of cement-based materials after absorption of CO2 under mechanical stirring and ultrasonic vibration. Results demonstrated that the higher CO2 absorption volume of fresh slurry generated more “nano-level” CaCO3 crystal nucleus. Accordingly, it could improve the porous structure of the cement mortar, decrease the quantity of capillary tubes significantly, improve the compaction degree of cement-based materials effectively, and lower the diffusion rate of CO2 in the cement paste base, thus improving the carbonation resistance. Research conclusions have important significance to decrease CO2 emissions and improve carbonation resistance of concrete.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. European oil and gas compaines’ strategic targets of net zero emissions by 2050;Yu;Int. Petrol. Econ.,2020

2. CO2 emissions from renewables: Solar pv, hydrothermal and EGS sources;Chandrasekharam;Geomech. Geophys.,2020

3. The Strategic Adjustment of China’s Energy Use Structure in the Context of Energy-Saving and Carbon Emission-Reducing Initiatives;Lin;Soc. Sci. China,2010

4. CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels;Yang;J. Geogr. Sci.,2017

5. Do the Unilateral Carbon Reduction Measures Contribute to the Global Carbon Emissions in Open Economy? A Review of Carbon Leakage;Ma;Int. Econ. Trade. Res.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3