An Image Edge Detection Algorithm Based on an Artificial Plant Community

Author:

Cai Zhengying1ORCID,Ma Zhe1,Zuo Ziyi1,Xiang Yafei1,Wang Mingtao1ORCID

Affiliation:

1. College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China

Abstract

Image edge detection is a difficult task, because it requires the accurate removal of irrelevant pixels, while retaining important pixels that describe the image’s structural properties. Here, an artificial plant community algorithm is proposed to aid in the solving of the image edge detection problem. First, the image edge detection problem is modeled as an objective function of an artificial plant community searching for water sources and nutrients. After many iterations, the artificial plant community is concentrated in habitable areas that are rich in water sources and nutrients, that is, the image edges, and the nonhabitable zones that are not suitable for living are deserted, that is, the nonedges. Second, an artificial plant community algorithm is designed to solve the objective function by simulating the growth process of a true plant community. The living behavior of the artificial plant community includes three operations: seeding, growing, and fruiting. The individuals in the plant community also correspond to three forms, namely seeds, individuals, and fruit. There are three fitness comparisons in each iteration. The first fitness comparison of each iteration is carried out during the seeding operation. Only the fruit with higher fitness levels in the last iteration can become seeds, while the fruit with low fitness levels die, and some new seeds are randomly generated. The second fitness comparison is implemented in the growing operation. Only the seeds with higher fitness levels can become individuals, but the seeds with lower fitness levels will die; thus, the community size will decrease. The third fitness comparison is in the fruiting operation, where the individual with the greatest fitness can produce an identical fruit through parthenogenesis, and the individuals with higher fitness levels can learn from each other and produce more fruit, so the population size can be restored. Through the continuous cycle of these three operations, the artificial plant community will finally determine the edge pixels and delete the nonedge pixels. Third, the experiment results reveal how the proposed algorithm generates the edge image, and the comparative results demonstrate that the proposed artificial plant community algorithm can effectively solve the image edge detection problems. Finally, this study and some limitations are summarized, and future directions are suggested. The proposed algorithm is expected to act as a new research tool for solving various complex problems.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects in Hubei Province of China

Yichang University Applied Basic Research Project in China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3