Damage Creep Model of Viscoelastic Rock Based on the Distributed Order Calculus

Author:

Li Ming1,Pu Hai1ORCID,Cao Lili2,Sha Ziheng1ORCID,Yu Hao1,Zhang Jiazhi3,Zhang Lianying4

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou 221004, China

3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

4. School of Civil Engineering, Xuzhou University of Technology, Xuzhou 221018, China

Abstract

In this paper, the distributed order calculus was used to establish a creep damage theoretical model to accurately describe the creep properties of viscoelastic materials. Firstly, the definition and basic properties in math of the distributed order calculus were given. On this basis, the mechanical elements of the distributed order damper were built to describe the viscoelastic properties. Then, the distributed order damper was introduced into the three-parameter solid model to establish the distributed order three-parameter solid model. The inverse Laplace transform derived the operator’s contour integrals and the path integrals along Hankel’s path. The integral properties were analysed. Next, the creep properties and relaxation characteristics of the distributed order three-parameter solid model were studied in detail. Finally, taking the rock materials as an example, the distributed order damage damper model was established. Its operator integrals were calculated, and the properties were discussed. Meanwhile, taking the integer-order Nishihara model as the standard, the distributed order damage creep combined model of the rock mass was constructed. The calculation examples were given to study the damage creep properties of the rock mass.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3