Affiliation:
1. Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
Abstract
Automated techniques to detect Alzheimer’s Dementia through the use of audio recordings of spontaneous speech are now available with varying degrees of reliability. Here, we present a systematic comparison across different modalities, granularities and machine learning models to guide in choosing the most effective tools. Specifically, we present a multi-modal approach (audio and text) for the automatic detection of Alzheimer’s Dementia from recordings of spontaneous speech. Sixteen features, including four feature extraction methods (Energy–Time plots, Keg of Text Analytics, Keg of Text Analytics-Extended and Speech to Silence ratio) not previously applied in this context were tested to determine their relative performance. These features encompass two modalities (audio vs. text) at two resolution scales (frame-level vs. file-level). We compared the accuracy resulting from these features and found that text-based classification outperformed audio-based classification with the best performance attaining 88.7%, surpassing other reports to-date relying on the same dataset. For text-based classification in particular, the best file-level feature performed 9.8% better than the frame-level feature. However, when comparing audio-based classification, the best frame-level feature performed 1.4% better than the best file-level feature. This multi-modal multi-model comparison at high- and low-resolution offers insights into which approach is most efficacious, depending on the sampling context. Such a comparison of the accuracy of Alzheimer’s Dementia classification using both frame-level and file-level granularities on audio and text modalities of different machine learning models on the same dataset has not been previously addressed. We also demonstrate that the subject’s speech captured in short time frames and their dynamics may contain enough inherent information to indicate the presence of dementia. Overall, such a systematic analysis facilitates the identification of Alzheimer’s Dementia quickly and non-invasively, potentially leading to more timely interventions and improved patient outcomes.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献