Analysis of Acoustic Signal Propagation for Reliable Digital Communication along Exposed and Buried Water Pipes

Author:

Farai Omotayo1ORCID,Metje Nicole2ORCID,Anthony Carl2,Chapman David2

Affiliation:

1. Independent Researcher, Birmingham B16 8FT, UK

2. School of Engineering, University of Birmingham, Birmingham B15 2TT, UK

Abstract

Wireless sensor networks (WSN) have emerged as a robust and cost-effective solution for buried pipeline monitoring due to the low cost (a maximum of a few tens of UK pounds (GBP)), low power supply capacity (in the order of 1 watt/hour) and small size (centimetre scale) requirements of the wireless sensor nodes. One of the main challenges for WSN deployment, however, is the limited range of underground data communication between the wireless sensor nodes of less than 3 m, which subsequently increases deployment costs for a utility owner for buried pipeline monitoring. A promising alternative to overcome this limitation is using low-frequency (<1 kHz) acoustic signal propagation along the pipe. This paper examines the feasibility of using low-frequency acoustic signal propagation along exposed and buried medium-density polyethylene (MDPE) pipes and makes predictions of the potential distances at which reliable data communication can be achieved. Quantification of the acoustic attenuation was performed using both analytical and numerical models in addition to laboratory and field experiments. The predicted acoustic data communication distance ranged between approximately 18 m for an exposed and approximately 11 m for a buried MDPE pipe. These results demonstrate the feasibility of using low-frequency acoustic signal propagation for achieving reliable wireless underground communication.

Funder

School of Engineering providing a partial stipend

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3