Small-Scale Zero-Shot Collision Localization for Robots Using RL-CNN

Author:

Lin Haoyu1ORCID,Lou Ya’nan2,Quan Pengkun1ORCID,Liang Zhuo1,Wei Dongbo1,Di Shichun1

Affiliation:

1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

Abstract

For safety reasons, in order to ensure that a robot can make a reasonable response after a collision, it is often necessary to localize the collision. The traditional model-based collision localization methods, which are highly dependent on the designed observer, are often only useful for rough localization due to the bias between simulation and real-world application. In contrast, for fine collision localization of small-scale regions, data-driven methods can achieve better results. In order to obtain high localization accuracy, the data required by data-driven methods need to be as comprehensive as possible, and this will greatly increase the cost of data collection. To address this problem, this article is dedicated to developing a data-driven method for zero-shot collision localization based on local region data. In previous work, global region data were used to construct the collision localization model without considering the similarity of the data used for analysis caused by the assembly method of the contact parts. However, when using local region data to build collision localization models, the process is easily affected by similarity, resulting in a decrease in the accuracy of collision localization. To alleviate this situation, a two-stage scheme is implemented in our method to simultaneously isolate the similarity and realize collision localization. Compared with the classical methods, the proposed method achieves significantly improved collision localization accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3