Zero-Shot Relation Triple Extraction with Prompts for Low-Resource Languages
Author:
Affiliation:
1. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
2. Xinjiang Laboratory of Multi-Language Information Technology, Urumqi 830046, China
Abstract
Funder
Natural Science Foundation of Xinjiang Uyghur Autonomous Region of China
National Key Research and Development Program of China
Publisher
MDPI AG
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Link
https://www.mdpi.com/2076-3417/13/7/4636/pdf
Reference58 articles.
1. Huang, S., Liu, J., Korn, F., Wang, X., Wu, Y., Markowitz, D., and Yu, C. (2019, January 4–8). Contextual fact ranking and its applications in table synthesis and compression. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), Anchorage, AK, USA.
2. Zhang, Y., Qi, P., and Manning, C.D. (2018, January 2–4). Graph convolution over pruned dependency trees improves relation extraction. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium.
3. Chen, C., and Li, C. (2021, January 6–11). Zs-bert: Towards zero-shot relation extraction with attribute representation learning. Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online.
4. Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009, January 2–7). Distant supervision for relation extraction without labeled data. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Singapore.
5. Riedel, S., Yao, L., and McCallum, A. (2010, January 19–23). Modeling relations and their mentions without labeled text. Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Bercelona, Spain.
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Revealing the coupled evolution process of construction risks in mega hydropower engineering through textual semantics;Advanced Engineering Informatics;2024-10
2. Df-Mma: Low-Resource Terms' Relation Recognition Model Based on Domain Features and Multi-Mask Attention;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3