Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration

Author:

Caramaschi Sara12ORCID,Papini Gabriele B.34ORCID,Caiani Enrico G.15ORCID

Affiliation:

1. Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy

2. Department of Computer Science and Media Technology, Internet of Things and People, Malmö University, 211 19 Malmö, Sweden

3. Department of Patient Care & Monitoring, Philips Research, 5656 AE Eindhoven, The Netherlands

4. Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

5. Istituto Auxologico Italiano, IRCCS, S. Luca Hospital, 20149 Milan, Italy

Abstract

Tracking a person’s activities is relevant in a variety of contexts, from health and group-specific assessments, such as elderly care, to fitness tracking and human–computer interaction. In a clinical context, sensor-based activity tracking could help monitor patients’ progress or deterioration during their hospitalization time. However, during routine hospital care, devices could face displacements in their position and orientation caused by incorrect device application, patients’ physical peculiarities, or patients’ day-to-day free movement. These aspects can significantly reduce algorithms’ performances. In this work, we investigated how shifts in orientation could impact Human Activity Recognition (HAR) classification. To reach this purpose, we propose an HAR model based on a single three-axis accelerometer that can be located anywhere on the participant’s trunk, capable of recognizing activities from multiple movement patterns, and, thanks to data augmentation, can deal with device displacement. Developed models were trained and validated using acceleration measurements acquired in fifteen participants, and tested on twenty-four participants, of which twenty were from a different study protocol for external validation. The obtained results highlight the impact of changes in device orientation on a HAR algorithm and the potential of simple wearable sensor data augmentation for tackling this challenge. When applying small rotations (<20 degrees), the error of the baseline non-augmented model steeply increased. On the contrary, even when considering rotations ranging from 0 to 180 along the frontal axis, our model reached a f1-score of 0.85±0.11 against a baseline model f1-score equal to 0.49±0.12.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CrossHAR: Generalizing Cross-dataset Human Activity Recognition via Hierarchical Self-Supervised Pretraining;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-05-13

2. An IoT-Based Method for Collecting Reference Walked Distance for the 6-Minute Walk Test;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3