Lithium-Ion Battery Aging Analysis of an Electric Vehicle Fleet Using a Tailored Neural Network Structure

Author:

Lehmann Thomas1,Weiß Frances1

Affiliation:

1. Fraunhofer Institute for Transportation and Infrastructure Systems, 01069 Dresden, Germany

Abstract

Within the presented research study we want to estimate the State of Health (SOH) of a fleet of electric vehicles solely using field data. This information may not only help operators during mission planning, but it can reveal causes of accelerated aging. For this purpose, we use a customized neural network that is able to process the data of all fleet vehicles simultaneously. Thus, information between batteries of the different vehicles is transferred and the extrapolation properties are enhanced. We firstly show results with data gathered from a fleet of 25 electric buses. A prediction accuracy of below 5 mV could be obtained for most validation sections. Furthermore, a proof-of-concept experiment illustrates the advantages of the fleet learning approach.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. BMBF (2023, March 29). Battnutzung-Cluster. Available online: https://www.battnutzung-cluster.de/de/projekte/febal/.

2. Battery Lifetime Prognostics;Hu;Joule,2020

3. Zhao, J., and Burke, A.F. (2022). Electric Vehicle Batteries: Status and Perspectives of Data-Driven Diagnosis and Prognosis. Batteries, 8.

4. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell;Doyle;J. Electrochem. Soc.,1993

5. A Computationally Efficient Implementation of an Electrochemistry-Based Model for Lithium-Ion Batteries;Xia;Int. Fed. Autom. Control,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3