Robust Algorithm Software for NACA 4-Digit Airfoil Shape Optimization Using the Adjoint Method

Author:

Tanabi Naser1ORCID,Silva Agesinaldo Matos1ORCID,Pessoa Marcosiris Amorim Oliveira1ORCID,Tsuzuki Marcos Sales Guerra1ORCID

Affiliation:

1. Computational Geometry Laboratory, Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, Escola Politécnica da Universidade de São Paulo, São Paulo CEP 05508-030, Brazil

Abstract

Optimizing the aerodynamic shape of an airfoil is a critical concern in the aviation industry. The introduction of flexible airfoils has allowed the shape of the airfoil to vary, depending on the flight conditions. Therefore, in this study, we propose an algorithm that is capable of robustly optimizing the shape of the airfoil based on variable parameters of the airfoil and flight conditions. The proposed algorithm can be understood as an optimization method, which employs the adjoint method, a powerful tool for estimating the sensitivity of the model output to the input in numerous studies. From an aerodynamic perspective, the development of shape geometry is a crucial step in airfoil development. The study used NACA-4 digit airfoils as input for the initial assumption and the range of shape change. The optimal shape was found using the proposed algorithm by defining one NACA profile as the initial value and another NACA profile as the limit for the optimized shape, considering the aerodynamic coefficients and flight conditions. However, morphing airfoils have certain deformation limitations. As an innovation in the algorithm, bounds were defined for the shape change during optimization so that the result can be constructed within the capabilities of the morphing wing. These bounds can be adjusted (depending on the capabilities of the airfoils). To validate the proposed algorithm, the study compared it with a previous flow solver for the same airfoil.

Funder

Petrobras/ANP/FUSP

CNPq

CAPES/PROAP

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3