A Novel Method to Generate Auto-Labeled Datasets for 3D Vehicle Identification Using a New Contrast Model

Author:

Gutierrez-Cabello Guillermo S.12,Talavera Edgar2ORCID,Iglesias Guillermo2ORCID,Clavijo Miguel1ORCID,Jiménez Felipe1ORCID

Affiliation:

1. University Institute for Automobile Research (INSIA), Universidad Politécnica de Madrid, 28031 Madrid, Spain

2. Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain

Abstract

Auto-labeling is one of the main challenges in 3D vehicle detection. Auto-labeled datasets can be used to identify objects in LiDAR data, which is a challenging task due to the large size of the dataset. In this work, we propose a novel methodology to generate new 3D based auto-labeling datasets with a different point of view setup than the one used in most recognized datasets (KITTI, WAYMO, etc.). The performance of the methodology has been further demonstrated with the development of our own dataset with the auto-generated labels and tested under boundary conditions on a bridge in a fixed position. The proposed methodology is based on the YOLO model trained with the KITTI dataset. From a camera-LiDAR sensor fusion, it is intended to auto-label new datasets while maintaining the consistency of the ground truth. The performance of the model, with respect to the manually labeled KITTI images, achieves an F-Score of 0.957, 0.927 and 0.740 in the easy, moderate and hard images of the dataset. The main contribution of this work is a novel methodology to auto-label autonomous driving datasets using YOLO as the main labeling system. The proposed methodology is tested under boundary conditions and the results show that this approximation can be easily adapted to a wide variety of problems when labeled datasets are not available.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3