The C-3 Functionalization of 1H-Indazole through Suzuki–Miyaura Cross-Coupling Catalyzed by a Ferrocene-Based Divalent Palladium Complex Immobilized over Ionic Liquid, as Well as Theoretical Insights into the Reaction Mechanism

Author:

Yu Jinmeng123,Zheng Aqun2,Jin Lu1ORCID,Wu Yong23ORCID,Pan Qin23,Wang Xiangdong23,Li Xiaoyong23,Wang Wanqin23,Gao Min23,Sun Yang23ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, No. 311, Nongda East Road, Urumqi 830052, China

2. Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China

3. Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou, Building No. 20, Science and Technology Innovation Port, Western China, Fengxi New City, Xixian New District, Xi’an 712000, China

Abstract

The C-3 functionalization of 1H-indazole could produce a lot of highly valuable pharmaceutical precursors, which could be used for the treatment of cancer and many other inflammatory diseases. This work was focused on the C-3 functionalization of 1H-indazole through Suzuki–Miyaura cross-coupling of 3-iodo-1H-indazole with organoboronic acids, catalyzed by various palladium catalysts immobilized over imidazolium ionic liquids, as well as catalyst recycling. A series of reaction parameters, including the substrate, catalyst, and ionic liquid, were fully investigated. It is significant to note that the yields of the present Suzuki–Miyaura cross-coupling were mainly determined by the catalyst and the solvent used, more than the chemical structure of the substrate. Furthermore, ferrocene-based divalent palladium complexes showed better catalytic outputs compared to simple palladium salts. Moreover, using two imidazolium ionic liquids, BMImX (BMIm+ = 1-n-butyl-3-methylimidazolium, X− = BF4−, PF6−) not only improved the yields of cross-coupled products, but also avoided the formation of Pd(0) black, as compared to the non-ionic liquid facilitated reactions, and simultaneously making catalyst recycling more effective. On average, BMImBF4 performed better than BMImPF6. Additionally, scientific calculations revealed that 1,1′-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (PdCl2(dppf)) showed a lower energy barrier in the formation of intermediates than [1,1′-bis(di-tert-butylphosphino)ferrocene]dichloropalladium(II) (PdCl2(dtbpf)), leading to higher catalytic outputs. This work may contribute to the development of 1H-indazole-derived new pharmaceuticals.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3