A Study on Detection of Malicious Behavior Based on Host Process Data Using Machine Learning

Author:

Han Ryeobin1ORCID,Kim Kookjin23ORCID,Choi Byunghun1ORCID,Jeong Youngsik1ORCID

Affiliation:

1. Department of Multimedia Engineering, Dongguk University, Seoul 04620, Republic of Korea

2. Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea

3. Department of Convergence Engineering for Intelligent Drones, Sejong University, Seoul 05006, Republic of Korea

Abstract

With the rapid increase in the number of cyber-attacks, detecting and preventing malicious behavior has become more important than ever before. In this study, we propose a method for detecting and classifying malicious behavior in host process data using machine learning algorithms. One of the challenges in this study is dealing with high-dimensional and imbalanced data. To address this, we first preprocessed the data using Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) to reduce the dimensions of the data and visualize the distribution. We then used the Adaptive Synthetic (ADASYN) and Synthetic Minority Over-sampling Technique (SMOTE) to handle the imbalanced data. We trained and evaluated the performance of the models using various machine learning algorithms, such as K-Nearest Neighbor, Naive Bayes, Random Forest, Autoencoder, and Memory-Augmented Deep Autoencoder (MemAE). Our results show that the preprocessed datasets using both ADASYN and SMOTE significantly improved the performance of all models, achieving higher precision, recall, and F1-Score values. Notably, the best performance was obtained when using the preprocessed dataset (SMOTE) with the MemAE model, yielding an F1-Score of 1.00. The evaluation was also conducted by measuring the Area Under the Receiver Operating Characteristic Curve (AUROC), which showed that all models performed well with an AUROC of over 90%. Our proposed method provides a promising approach for detecting and classifying malicious behavior in host process data using machine learning algorithms, which can be used in various fields such as anomaly detection and medical diagnosis.

Funder

Agency for Defense Development Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. Exploring and analyzing Internet crimes and their behaviours;Arora;Perspect. Sci.,2016

2. (2023, March 18). Check Point Research: Third Quarter of 2022 Reveals Increase in Cyberattacks and Unexpected Developments in Global Trends. Available online: https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks.

3. Review of Viruses and Antivirus patterns;Wanjala;Glob. J. Comput. Sci. Technol.,2017

4. An intrusion detection model based on feature reduction and convolutional neural networks;Xiao;IEEE Access,2019

5. Introducing deep learning self-adaptive misuse network intrusion detection systems;Papamartzivanos;IEEE Access,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3