Inactivation of the Plant Pathogen Pythium ultimum by Plasma-Processed Air (PPA)

Author:

Wannicke Nicola1ORCID,Brust Henrike1ORCID

Affiliation:

1. Leibniz-Institute for Plasma Science and Technology e.V., 17489 Greifswald, Germany

Abstract

Pythium species are saprophytic or facultative plant pathogens that cause a variety of diseases. Usually, chemical anti-fungal seed dressing is applied in the conventional pre-harvest for seed protection. Nevertheless, recent legislative rules have created a ban on certain agrochemicals. Therefore, alternative eco-friendly methods have to be identified to ensure healthy field emergence and seedling development. In this study, a proof-of-concept was performed on the inactivation of Pythium ultimum Trow mycelia grown on potato dextrose broth agar (PBA) by plasma-processed air (PPA). Different plasma process parameters were applied using variation in gas flow of air through the microwave plasma generator and PPA exposure time. The PPA treatment was compared to the untreated and gas treated controls. The results showed a complete inactivation of P. ultimum mycelia after the PPA treatment. Inactivation efficiency was independent of the gas flow parameter and even shorter exposure times resulted in complete inactivation. To fully evaluate the potential of PPA as a possible seed hygiene measure, tests regarding the inactivation of P. ultimum after artificial inoculation onto seeds and/or studies using naturally infected seeds should be performed. This may be accompanied by monitoring the disease severity after the PPA treatment on a field scale.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3