Positively Charged Organosilanes Covalently Linked to the Silica Network as Modulating Tools for the Salinity Correction of pH Values Obtained with Colorimetric Sensor Arrays (CSAs)

Author:

Pastore Andrea1,Badocco Denis1,Cappellin Luca1,Tubiana Mauro1,Pastore Paolo1ORCID

Affiliation:

1. Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padua, Italy

Abstract

Seven increasing levels of water salinity from 0.029 to 0.600 M (as NaCl) were used to investigate the dependence of pH measurement, performed using colorimetric sensor arrays (CSAs), on ionic strength. The CSAs were arrays of sensing spots prepared in the form of sol–gel-embedding Bromothymol Blue (BB) and Bromocresol Green (BCG) in a porous nitrocellulose support. The support was impregnated over the entire thickness (≈100 µm), allowing for the signal (Hue) acquisition on the opposite side to the contact with the sample solution. Three CSAs were prepared, M1, M2, and M3. M1 contained a free cationic surfactant, hexadecyltrimethylammonium p-toluenesulfonate (CTApTs), for modulating the pKa of the indicators. In M2, the surfactant dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DTSACl) was covalently bonded to the sol–gel. M3 was prepared like M2 but using a larger amount of ethanol as the solvent for the synthesis. The modulation of the CTApTs or the DTSACl concentration enabled the tuning of the pKa. In general, the pKa modulation ability decreased with the increase in salinity. The presence of a surfactant covalently linked to the backbone partially reduced the competitiveness of the anionic species, improving the results. Nevertheless, the salt effect was still present, and a correction algorithm was required. Between pH 5.00 and 12.00, this correction could be made automatically by using spots taken as references to produce sensors independent of salinity. As the salt effect is virtually absent above 0.160 M, M2 and M3 can be used for future applications in seawater.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3