An Investigation into the Application of Acceleration Responses’ Trendline for Bridge Damage Detection Using Quadratic Regression

Author:

Kordestani Hadi1ORCID,Zhang Chunwei2,Arab Ali2ORCID

Affiliation:

1. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang 110870, China

Abstract

It has been proven that structural damage can be successfully identified using trendlines of structural acceleration responses. In previous numerical and experimental studies, the Savitzky–Golay filter and moving average filter were adjusted to determine suitable trendlines and locate structural damage in a simply supported bridge. In this study, the quadratic regression technique was studied and employed to calculate the trendlines of the bridge acceleration responses. The normalized energies of the resulting trendlines were then used as a damage index to identify the location and severity of the structural bridge damage. An ABAQUS model of a 25 m simply supported bridge under a truckload with different velocities was used to verify the accuracy of the proposed method. The structural damage was numerically modeled as cracks at the bottom of the bridge, so the stiffness at the damage positions was decreased accordingly. Four different velocities from 1 m/s to 8 m/s were used. The proposed method can identify structural damage in noisy environments without monitoring the dynamic modal parameters. Moreover, the accuracy of the newly proposed trendline-based method was increased compared to the previous method. For velocities up to 4 m/s, the damage in all single- and multiple-damage scenarios was successfully identified. For the velocity of 8 m/s, the damage in some scenarios was not located accurately. Additionally, it should be noted that the proposed method can be categorized as an online, quick, and baseline-free structural damage-detection method.

Funder

Department of Science and Technology of Shandong Province

National Natural Science Foundation of China

Ministry of Science and Technology of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3