IMU-Based Energy Expenditure Estimation for Various Walking Conditions Using a Hybrid CNN–LSTM Model

Author:

Lee Chang June1ORCID,Lee Jung Keun2ORCID

Affiliation:

1. Department of Integrated Systems Engineering, Hankyong National University, Anseong 17579, Republic of Korea

2. School of ICT, Robotics & Mechanical Engineering, Hankyong National University, Anseong 17579, Republic of Korea

Abstract

In ubiquitous healthcare systems, energy expenditure estimation based on wearable sensors such as inertial measurement units (IMUs) is important for monitoring the intensity of physical activity. Although several studies have reported data-driven methods to estimate energy expenditure during activities of daily living using wearable sensor signals, few have evaluated the performance while walking at various speeds and inclines. In this study, we present a hybrid model comprising a convolutional neural network (CNN) and long short-term memory (LSTM) to estimate the steady-state energy expenditure under various walking conditions based solely on IMU data. To implement and evaluate the model, we performed level/inclined walking and level running experiments on a treadmill. With regard to the model inputs, the performance of the proposed model based on fixed-size sequential data was compared with that of a method based on stride-segmented data under different conditions in terms of the sensor location, input sequence format, and neural network model. Based on the experimental results, the following conclusions were drawn: (i) the CNN–LSTM model using a two-second sequence from the IMU attached to the lower body yielded optimal performance, and (ii) although the stride-segmented data-based method showed superior performance, the performance difference between the two methods was not significant; therefore, the proposed model based on fixed-size sequential data may be considered more practical as it does not require heel-strike detection.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radar-Based Exercise Energy Expenditure Estimation with Deep Learning;2024 IEEE Symposium on Wireless Technology & Applications (ISWTA);2024-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3