Multi-Dimensional Urbanization Coordinated Evolution Process and Ecological Risk Response in the Yangtze River Delta

Author:

Li Xin,Fang Bin,Yin Mengru,Jin Tao,Xu Xin

Abstract

The dislocated development of population, land, and economy will disturb the urban system, cause ecological risk problems, and ultimately affect regional habitat and quality development. Based on social statistics and nighttime lighting data from 2000 to 2018, we used mathematical statistics and spatial analysis methods to analyze the change process of urbanization’s coupling coordination degree and ecological risk response pattern in the Yangtze River Delta. Results show that: ① From 2000 to 2018, the coupling coordination degree of urbanization in the Yangtze River Delta increased, with high values in Suzhou-Wuxi-Changzhou, Shanghai, Nanjing and Hangzhou regions. ② The ecological risk in the Yangtze River Delta weakened, and the vulnerability and disturbance of landscape components together constitute the spatial differentiation pattern of regional ecological risk, which presented homogeneous aggregation and heterogeneous isolation. ③ The overall ecological stress of urbanization in the Yangtze River Delta decreased. ④ The population aggregation degree, socio-economic development level and built-up area expansion trend contributed to the spatiotemporal differentiation of urbanization’s ecological risks through the synergistic effects of factor concentration and diffusion, population quality cultivation and improvement, technological progress and dispersion, industrial structure adjustment and upgrading. This study can provide a reference for regional urbanization to deal with ecological risks reasonably and achieve high-quality development.

Funder

National Natural Science Foundation of China

Jiangsu Province University advantageous discipline construction project funding project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3