Land Cover Classification from Hyperspectral Images via Local Nearest Neighbor Collaborative Representation with Tikhonov Regularization

Author:

Yang RongchaoORCID,Zhou Qingbo,Fan Beilei,Wang Yuting

Abstract

The accurate and timely monitoring of land cover types is of great significance for the scientific planning, rational utilization, effective protection and management of land resources. In recent years, land cover classification based on hyperspectral images and the collaborative representation (CR) model has become a hot topic in the field of remote sensing. However, most of the existing CR models do not consider the problem of sample imbalance, which affects the classification performance of CR models. In addition, the Tikhonov regularization term can improve the classification performance of CR models, but greatly increases the computational complexity of CR models. To address the above problems, a local nearest neighbor (LNN) method is proposed in this paper to select the same number of nearest neighbor samples from each nearest class of the test sample to construct a dictionary. This is then introduced into the original collaborative representation classification (CRC) method and CRC with Tikhonov regularization (CRT) for land cover classification, denoted as LNNCRC and LNNCRT, respectively. To verify the effectiveness of the proposed LNNCRC and LNNCRT methods, the classification performance and running time of the proposed methods are compared with those of six popular CR models on a hyperspectral scene with nine land cover types. The experimental results show that the proposed LNNCRT method achieves the best land cover classification performance, and the proposed LNNCRC and LNNCRT methods not only further exclude the interference of irrelevant training samples and classes, but also effectively eliminate the influence of imbalanced training samples, so as to improve the classification performance of CR models and effectively reduce the computational complexity of CR models.

Funder

Basic Research Fund of Agricultural Information Institute of CAAS

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3