A Refined Rural Settlements Simulation Considering the Competition Relationship among the Internal Land Use Types: A Case Study of Pinggu District

Author:

Tian Yaya,Jiang Guanghui,Zhou Dingyang,Zhou Tao,Ma Wenqiu

Abstract

Simulating the future evolution of the internal land use structure of rural settlements (RSILUS) is vital for rural land management. However, previous simulation studies have mostly regarded rural settlements as a whole, thereby ignoring their internal structural variations. In this paper, as an example, we select Pinggu District, which has experienced the impact of rapid urbanization and has an unstable rural land use structure (LUS); then, we examine the driving factors of the changes in the RSILUS, construct a cellular automata (CA)–Markov simulation model specifying the RSILUS, and simulate its changes in 2025. The results indicate the following. (1) The influencing factors of various land use changes in rural settlements in Pinggu District differ significantly. Basic land, such as living functional land, is greatly influenced by natural resources, whereas production functional land is subject to socioeconomic factors. (2) The simulation results demonstrate that from 2015 to 2025, the production and living functional land areas of rural settlements will decrease as a whole. Accordingly, the distribution of rural public service land (RPSL) will tend to remain stable, and the trends of land use abandonment and functional degradation will continue as rural areas continue to recede. Our study enriches the research on rural land use systems by refining the simulation of rural settlements to focus on their internal structure. The differentiation and complexity of the changes in rural LUS types further suggests that rural planning and renewal should adapt to the changing conditions of the RSILUS, and the LUS should be adjusted to improve the constructed environment in human settlements and equalize urban and rural areas.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3