Abstract
Climate change is likely to have serious social, economic, and environmental impacts on farmers whose subsistence depends on nature. Land Use Land Cover (LULC) changes were examined as a significant tool for assessing changes at diverse temporal and spatial scales. Normalized Difference Vegetation Index (NDVI) has the potential ability to signify the vegetation structures of various eco-regions and provide valuable information as a remote sensing tool in studying vegetation phenology cycles. In this study, we used remote sensing and Geographical Information System (GIS) techniques with Maximum Likelihood Classification (MLC) to identify the LULC changes for 40 years in the Sahiwal District. Later, we conducted 120 questionnaires administered to local farmers which were used to correlate climate changes with NDVI. The LULC maps were prepared using MLC and training sites for the years 1981, 2001, and 2021. Regression analysis (R2) was performed to identify the relationship between temperature and vegetation cover (NDVI) in the study area. Results indicate that the build-up area was increased from 7203.76 ha (2.25%) to 31,081.3 ha (9.70%), while the vegetation area decreased by 14,427.1 ha (4.5%) from 1981 to 2021 in Sahiwal District. The mean NDVI values showed that overall NDVI values decreased from 0.24 to 0.20 from 1981 to 2021. Almost 78% of farmers stated that the climate has been changing during the last few years, 72% of farmers stated that climate change had affected agriculture, and 53% of farmers thought that rainfall intensity had also decreased. The R2 tendency showed that temperature and NDVI were negatively connected to each other. This study will integrate and apply the best and most suitable methods, tools, and approaches for equitable local adaptation and governance of agricultural systems in changing climate conditions. Therefore, this research outcome will also meaningfully help policymakers and urban planners for sustainable LULC management and strategies at the local level.
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献