Contemporary Climate Change and Its Hydrological Consequence in the Volga Federal District, European Russia

Author:

Perevedentsev Yuri,Gusarov ArtyomORCID,Mirsaeva Nadezhda,Sherstyukov Boris,Shantalinsky Konstantin,Guryanov Vladimir,Aukhadeev Timur

Abstract

An analysis of spatiotemporal variability of air temperature and precipitation in the Volga Federal District (European Russia) between 1966 and 2021 was carried out. Based on data from 20 meteorological stations, relatively evenly located on the territory under consideration, the spatial distribution of average monthly and average annual air temperatures and monthly and annual precipitation was assessed; some indicators of the temporal variability of these variables in the period under consideration were calculated and analyzed. It was revealed that throughout the Volga Federal District, there was a tendency of climate warming in all months, and a slight increase in annual precipitation, except for the southeast of the district, where the precipitation trend was negative. It is noted that in the period 1955–1998, the number of negative air temperature anomalies was approximately equal to the number of positive ones; however, in the later period 1999–2021, the number of positive anomalies significantly exceeded the number of negative ones. Based on reanalysis data, climatic maps of vaporization and runoff in the Volga Federal District during 1966–2021 were created. The dependence of air temperature fluctuations on the nature of atmospheric circulation was revealed using the NAO, AO, and SCAND indices. On the example of the central part of the district (Republic of Tatarstan), some increase in summer aridity of the climate was revealed by using Budyko’s dryness index, Selyaninov’s hydrothermal coefficient, and Sapozhnikov’s humidification coefficient. The indicators of runoff and evaporation were also calculated using the methods of Schreiber and Ivanov. Against the background of the positive trend in vaporization rates, favorable conditions for a decrease in runoff were noted.

Funder

Russian Science Foundation

Strategic Academic Leadership Program “Priority 2030” of the Kazan Federal University of the Government of the Russian Federation

Publisher

MDPI AG

Subject

Atmospheric Science

Reference30 articles.

1. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. (2022). 2022: Climate Change 2022: Impacts. Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Special Report of the Intergovernmental Panel on Climate Change “Global Warming of 1.5 °C”;Gladilshchikova;Fundam. Appl. Climatol.,2018

3. Kolobov, N.V. (1968). The Climate of the Middle Volga Region, Publishing House of Kazan University. (In Russian).

4. Kolobov, N.V., and Murakaeva, S.A. (1980). Droughts in the Territory of the Tatar ASSR, Publishing House of Kazan University. (In Russian).

5. Long-term variations in main characteristics of the hydrometeorological Volga basin regime;Perevedentsev;Russ. Meteorol. Hydrol.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3