Predicting Cell Cleavage Timings from Time-Lapse Videos of Human Embryos

Author:

Sharma Akriti1ORCID,Ansari Ayaz Z.2ORCID,Kakulavarapu Radhika3ORCID,Stensen Mette H.4ORCID,Riegler Michael A.5ORCID,Hammer Hugo L.15ORCID

Affiliation:

1. Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway

2. Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India

3. Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway

4. Fertilitetssenteret, Pilestredet Park, 0176 Oslo, Norway

5. Department of Holistic Systems, SimulaMet, 0167 Oslo, Norway

Abstract

Assisted reproductive technology is used for treating infertility, and its success relies on the quality and viability of embryos chosen for uterine transfer. Currently, embryologists manually assess embryo development, including the time duration between the cell cleavages. This paper introduces a machine learning methodology for automating the computations for the start of cell cleavage stages, in hours post insemination, in time-lapse videos. The methodology detects embryo cells in video frames and predicts the frame with the onset of the cell cleavage stage. Next, the methodology reads hours post insemination from the frame using optical character recognition. Unlike traditional embryo cell detection techniques, our suggested approach eliminates the need for extra image processing tasks such as locating embryos or removing extracellular material (fragmentation). The methodology accurately predicts cell cleavage stages up to five cells. The methodology was also able to detect the morphological structures of later cell cleavage stages, such as morula and blastocyst. It takes about one minute for the methodology to annotate the times of all the cell cleavages in a time-lapse video.

Funder

Research Council of Norway

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3