An Improved Pattern Sequence-Based Energy Load Forecast Algorithm Based on Self-Organizing Maps and Artificial Neural Networks
Author:
Affiliation:
1. Department of Computer Science and Artificial Intelligence, University of Granada, 18014 Granada, Spain
2. Department of Software Engineering, University of Granada, 18014 Granada, Spain
Abstract
Funder
Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía
Ministerio de Ciencia e Innovación
Publisher
MDPI AG
Subject
Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems
Link
https://www.mdpi.com/2504-2289/7/2/92/pdf
Reference29 articles.
1. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network;Kong;IEEE Trans. Smart Grid,2019
2. Ruiz, L.G.B., Cuéllar, M.P., Calvo-Flores, M.D., and Jiménez, M.D.C.P. (2016). An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings. Energies, 9.
3. Short-term electricity load forecasting using a hybrid model;Zhang;Energy,2018
4. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting;Ghadimi;Energy,2018
5. Energy time series forecasting based on pattern sequence similarity;Troncoso;IEEE Trans. Knowl. Data Eng.,2011
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pattern sequence-based algorithm for multivariate big data time series forecasting: Application to electricity consumption;Future Generation Computer Systems;2024-05
2. A Novel Statistical Framework for Optimal Sizing of Grid-Connected Photovoltaic–Battery Systems for Peak Demand Reduction to Flatten Daily Load Profiles;Solar;2024-03-14
3. Energy consumption forecasting with deep learning;Journal of Physics: Conference Series;2024-02-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3