Attention Mechanism and Support Vector Machine for Image-Based E-Mail Spam Filtering

Author:

Hnini Ghizlane1ORCID,Riffi Jamal1,Mahraz Mohamed Adnane1,Yahyaouy Ali1,Tairi Hamid1

Affiliation:

1. Laboratory of Computer Science, Signals, Automation and Cognitivism (LISAC), University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco

Abstract

Spammers have created a new kind of electronic mail (e-mail) called image-based spam to bypass text-based spam filters. Unfortunately, these images contain harmful links that can infect the user’s computer system and take a long time to be deleted, which can hamper users’ productivity and security. In this paper, a hybrid deep neural network architecture is suggested to address this problem. It is based on the convolution neural network (CNN), which has been enhanced with the convolutional block attention module (CBAM). Initially, CNN enhanced with CBAM is used to extract the most crucial information from each image-based e-mail. Then, the generated feature vectors are fed to the support vector machine (SVM) model to classify them as either spam or ham. Four datasets—including Image Spam Hunter (ISH), Annadatha, Chavda Approach 1, and Chavda Approach 2—are used in the experiments. The obtained results demonstrated that in terms of accuracy, our model exceeds the existing state-of-the-art methods.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3