Managing and Optimizing Big Data Workloads for On-Demand User Centric Reports

Author:

Băicoianu Alexandra1ORCID,Scheianu Ion Valentin2

Affiliation:

1. Department of Mathematics and Informatics, Faculty of Mathematics and Informatics, Transilvania University of Braşov, Iuliu Maniu 50, 500090 Braşov, Romania

2. Faculty of Mathematics and Informatics, Transilvania University of Braşov, Iuliu Maniu 50, 500090 Braşov, Romania

Abstract

The term “big data” refers to the vast amount of structured and unstructured data generated by businesses, organizations, and individuals on a daily basis. The rapid growth of big data has led to the development of new technologies and techniques for storing, processing, and analyzing these data in order to extract valuable information. This study examines some of these technologies, compares their pros and cons, and provides solutions for handling specific types of reporting using big data tools. In addition, this paper discusses some of the challenges associated with big data and suggests approaches that could be used to manage and analyze these data. The findings demonstrate the benefits of efficiently managing the datasets and choosing the appropriate tools, as well as the efficiency of the proposed solution with hands-on examples.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference28 articles.

1. Sumits, A. (2022, December 17). The History and Future of Internet Traffic. Available online: https://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic.

2. O’Dea, S. (2022, December 17). Monthly Internet Traffic in the U.S. 2018–2023. Available online: https://www.statista.com/statistics/216335/data-usage-per-month-in-the-us-by-age/.

3. Heffernan, V. (2022, December 27). Is Moore’s Law Really Dead?. Available online: https://www.wired.com/story/moores-law-really-dead/.

4. Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, U., Franklin, M., Gehrke, J., Haas, L., Halevy, A., and Han, J. (2011). Challenges and Opportunities with Big Data 2011-1, Purdue University Libraries.

5. Takahashi, D. (2022, December 27). Intel: Moore’s Law Isn’t Slowing Down. Available online: https://venturebeat.com/business/intel-moores-law-isnt-slowing-down/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3