Study of 4,4‘-Methylene Diisocyanate Phenyl Ester-Modified Cassava Residues/Polybutylene Succinate Biodegradable Composites: Preparation and Performance Research

Author:

Huang Lijie,Zhao Hanyu,Xu HaoORCID,An Shuxiang,Li Chunying,Huang Chongxing,Wang Shuangfei,Liu Yang,Chen Jie

Abstract

Biomass materials have become a research focus for humankind, due to the decreasing availability of fossil fuels and the increasing release of greenhouse gas. In this work, we prepared biodegradable composites with waste cassava residues and polybutylene succinate (PBS) by modifying cassava residues using 4,4’-methylene diisocyanate phenyl ester (MDI) and tested their properties. The effects of MDI modification on the structure, mechanical properties, water absorption, microstructure, and thermal stability of the composites were studied via Fourier transform infrared spectroscopy, contact angle measurement, mechanical property testing, water absorption analysis, scanning electron microscopy, and thermogravimetric analysis, respectively. The results showed that the tensile strength and flexural strength of the material increased by 72% and 20.89%, respectively, when the MDI-modified cassava residue content was 30%. When 10% MDI-modified cassava residues were added, the tensile strength increased by 19.46% from 16.96 MPa to 20.26 MPa, while the bending strength did not change significantly. The water contact angle of the MDI-treated cassava residues exceeded 100°, indicating excellent hydrophobicity. Thus, MDI modification can significantly improve the mechanical properties and thermal stability of the biocomposite. The composites were immersed in distilled water for 96 h. The water absorption of the cassava residues/PBS composite was 2.19%, while that of the MDI-modified cassava residues/PBS composite was 1.6%; hence, the water absorption of the MDI-modified cassava residues/PBS composite was reduced to 26.94%. This technology has wide application potential in packaging, construction, and allied fields.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference30 articles.

1. Progress of cassava breeding in China;Yan;Chin. Agric. Sci. Bull.,2015

2. Save and Grow: Cassava. A Guide to Sustainable Production Intensification;Howeler,2013

3. Primary study of the nutrient contents in the flesh and cortex of cassava root;Wei;Chin. J. Trop. Crops,2015

4. Cultivation of schizophyllum commune using cassava residues;Zhang;J. WSU,2018

5. Biotechnological potential of agro-industrial residues. II: cassava bagasse

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3