Improvement of Catalytic Activity of Platinum Nanoparticles Decorated Carbon Graphene Composite on Oxygen Electroreduction for Fuel Cells

Author:

Begum Halima,Kim Young-Bae

Abstract

High-performance platinum (Pt)-based catalyst development is crucially important for reducing high overpotential of sluggish oxygen reduction reaction (ORR) at Pt-based electrocatalysts, although the high cost and scarcity in nature of Pt are profoundly hampering the practical use of it in fuel cells. Thus, the enhancing activity of Pt-based electrocatalysts with minimal Pt-loading through alloy, core−shell or composite making has been implemented. This article deals with enhancing electrocatalytic activity on ORR of commercially available platinum/carbon (Pt/C) with graphene sheets through a simple composite making. The Pt/C with graphene sheets composite materials (denoted as Pt/Cx:G10−x) have been characterized by several instrumental measurements. It shows that the Pt nanoparticles (NPs) from the Pt/C have been transferred towards the π-conjugated systems of the graphene sheets with better monolayer dispersion. The optimized Pt/C8:G2 composite has higher specific surface area and better degree of graphitization with better dispersion of NPs. As a result, it shows not only stable electrochemical surface area but also enhanced ORR catalytic activity in respect to the onset potential, mass activity and electron transfer kinetics. As shown by the ORR, the Pt/C8:G2 composite is also better resistive to the alcohol crossover effect and more durable than the Pt/C.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3