Synergism of Artificial Intelligence and Techno-Economic for Sustainable Treatment of Methylene Blue Dye-Containing Wastewater by Photocatalysis

Author:

Ngulube Khumbolake Faith1ORCID,Abdelhaleem Amal1ORCID,Fujii Manabu2,Nasr Mahmoud13ORCID

Affiliation:

1. Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt

2. Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan

3. Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

Abstract

Recently, removing dyes from wastewater by photocatalysis has been extensively studied by several researchers. However, there exists a research gap in optimizing the photocatalytic process parameters using artificial intelligence to maintain the associated techno-economic feasibility. Hence, this investigation attempts to optimize the photocatalytic degradation of methylene blue (MB) dye using an artificial neural network (ANN) model to minimize the capital and running costs, which is beneficial for industrial applications. A ZnO/MgO photocatalyst was synthesized, showing an energy band gap of 2.96 eV, crystallinity index of 71.92%, pore volume of 0.529 cm3/g, surface area of 30.536 m2/g, and multiple surface functional groups. An ANN model, with a 4-8-1 topology, trainlm training function, and feed-forward back-propagation algorithm, succeeded in predicting the MB removal efficiency (R2 = 0.946 and mean squared error = 11.2). The ANN-based optimized condition depicted that over 99% of MB could be removed under C0 = 16.42 mg/L, pH = 9.95, and catalyst dosage = 905 mg/L within 174 min. This optimum condition corresponded to a treatment cost of USD 8.52/m3 cheaper than the price estimated from the unoptimized photocatalytic system by ≈7%. The study outputs revealed positive correlations with the sustainable development goals accompanied by pollution reduction, human health protection, and aquatic species conservation.

Funder

TICAD7

Egypt-Japan University of Science and Technology

Japan International Cooperation Agency

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3