Comparing Non-Destructive Methods to Estimate Volume of Three Tree Taxa in Beijing, China

Author:

Liu JinchengORCID,Feng Zhongke,Mannan Abdul,Khan Tauheed,Cheng Zhuxin

Abstract

Establishing the tree volume table is an important aspect of forest inventory for managing the forest ecosystem. The traditional volume models used to build tree volume tables are time consuming and expensive, demanding huge labor and material resources. Aiming at the improvement of the current destructive, costly and time-consuming volume model, we propose a new non-destructive, low-cost and efficient method for calculating the tree volume model with high precision by using the electronic theodolite. For testing and comparing the accuracy of our model with the traditional model, we collected data of three main tree taxa including Platycladus orientalis (L.) Franco, Larix principis-rupprechtii Mayr and Populus spp. L. from different districts and counties of Beijing, China. We collected a total of 1750 tree samples (250 Platycladus orientalis, 300 Larix principis-rupprechtii, and 1200 Populus spp.) to establish our models; 721 pieces of accurate data (94 Platycladus orientalis, 149 Larix principis-rupprechtii, and 478 Populus spp.) were used as test samples, to evaluate the accuracy of the newly established volume models of three tree species (group). After that, the established volume models (unary/binary models) were compared and analyzed with the corresponding ministerial models for applicability and accuracy. The results showed that the difference between the data observed by the new method and the measurement data of parsing trees was not significant. The total relative error (TRE) and the mean system error (MSE) of the newly established unary/binary volume models were all within ±3%, satisfying the accuracy standard specified by the technical indicators. Compared with the ministerial models applied to the same data, our models’ performance and accuracy were higher (close to the field measurements). Our results also showed that the accuracy of ministerial models was lower than the required standards. It is a promising methodology to use the electronic theodolite non-destructive observation method to establish tree volume tables in the future, especially in areas where cutting is prohibited or restricted and there is a lack of tree volume tables. In addition, this method has also shown a great potential of applicability in forest ecology and environmental protection.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

MDPI AG

Subject

Forestry

Reference48 articles.

1. Forest resources of nations in relation to human well-being

2. The Prediction of Forest Carbon Sequestration Dynamics in Guizhou Province and Relevant Influencing Factors;Mingjun;Pak. J. Bot.,2018

3. A sampling design for a large area forest inventory: case Tanzania

4. Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information

5. Research on Non-Destructive Precision Measurement and Modeling Method of Standing Timber;CAO,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3