Comparison of a Smartfin with an Infrared Sea Surface Temperature Radiometer in the Atlantic Ocean

Author:

Brewin Robert J. W.ORCID,Wimmer Werenfrid,Bresnahan Philip J.ORCID,Cyronak TylerORCID,Andersson Andreas J.,Dall’Olmo GiorgioORCID

Abstract

The accuracy and precision of satellite sea surface temperature (SST) products in nearshore coastal waters are not well known, owing to a lack of in-situ data available for validation. It has been suggested that recreational watersports enthusiasts, who immerse themselves in nearshore coastal waters, be used as a platform to improve sampling and fill this gap. One tool that has been used worldwide by surfers is the Smartfin, which contains a temperature sensor integrated into a surfboard fin. If tools such as the Smartfin are to be considered for satellite validation work, they must be carefully evaluated against state-of-the-art techniques to quantify data quality. In this study, we developed a Simple Oceanographic floating Device (SOD), designed to float on the ocean surface, and deployed it during the 28th Atlantic Meridional Transect (AMT28) research cruise (September and October 2018). We attached a Smartfin to the underside of the SOD, which measured temperature at a depth of ∼0.1 m, in a manner consistent with how it collects data on a surfboard. Additional temperature sensors (an iButton and a TidbiT v2), shaded and positioned a depth of ∼1 m, were also attached to the SOD at some of the stations. Four laboratory comparisons of the SOD sensors (Smartfin, iButton and TidbiT v2) with an accurate temperature probe (±0.0043 K over a range of 273.15 to 323.15 K) were also conducted during the AMT28 voyage, over a temperature range of 290–309 K in a recirculating water bath. Mean differences (δ), referenced to the temperature probe, were removed from the iButton (δ=0.292 K) and a TidbiT v2 sensors (δ=0.089 K), but not from the Smartfin, as it was found to be in excellent agreement with the temperature probe (δ=0.005 K). The SOD was deployed for 20 min periods at 62 stations (predawn and noon) spanning 100 degrees latitude and a gradient in SST of 19 K. Simultaneous measurements of skin SST were collected using an Infrared Sea surface temperature Autonomous Radiometer (ISAR), a state-of-the-art instrument used for satellite validation. Additionally, we extracted simultaneous SST measurements, collected at slightly different depths, from an underway conductivity, temperature and depth (CTD) system. Over all 62 stations, the mean difference (δ) and mean absolute difference (ϵ) between Smartfin and the underway CTD were −0.01 and 0.06 K respectively (similar results obtained from comparisons between Smartfin and iButton and Smartfin and TidbiT v2), and the δ and ϵ between Smartfin and ISAR were 0.09 and 0.12 K respectively. In both comparisons, statistics varied between noon and predawn stations, with differences related to environmental variability (wind speed and sea-air temperature differences) and depth of sampling. Our results add confidence to the use of Smartfin as a citizen science tool for evaluating satellite SST data, and data collected using the SOD and ISAR were shown to be useful for quantifying near-surface temperature gradients.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Systematic Observation Requirements from Satellite-Based Data Products for Climate,2011

2. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy

3. The importance of ocean temperature to global biogeochemistry

4. Seawater: Its Composition, Properties and Behaviour;Brown,1995

5. Temperature and phytoplankton growth in the sea;Eppley;Fish. Bull.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3