Enhancing Metaheuristic Optimization: A Novel Nature-Inspired Hybrid Approach Incorporating Selected Pseudorandom Number Generators

Author:

Gulić Marko12ORCID,Žuškin Martina1ORCID

Affiliation:

1. Faculty of Maritime Studies, University of Rijeka, Studentska 2, 51000 Rijeka, Croatia

2. Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia

Abstract

In this paper, a hybrid nature-inspired metaheuristic algorithm based on the Genetic Algorithm and the African Buffalo Optimization is proposed. The hybrid approach adaptively switches between the Genetic Algorithm and the African Buffalo Optimization during the optimization process, leveraging their respective strengths to improve performance. To improve randomness, the hybrid approach uses two high-quality pseudorandom number generators—the 64-bit and 32-bit versions of the SIMD-Oriented Fast Mersenne Twister. The effectiveness of the hybrid algorithm is evaluated on the NP-hard Container Relocation Problem, focusing on a test set of restricted Container Relocation Problems with higher complexity. The results show that the hybrid algorithm outperforms the individual Genetic Algorithm and the African Buffalo Optimization, which use standard pseudorandom number generators. The adaptive switch method allows the algorithm to adapt to different optimization problems and mitigate problems such as premature convergence and local optima. Moreover, the importance of pseudorandom number generator selection in metaheuristic algorithms is highlighted, as it directly affects the optimization results. The use of powerful pseudorandom number generators reduces the probability of premature convergence and local optima, leading to better optimization results. Overall, the research demonstrates the potential of hybrid metaheuristic approaches for solving complex optimization problems, which makes them relevant for scientific research and practical applications.

Funder

project line ZIP UNIRI of the University of Rijeka

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CCM-PRNG: Pseudo-random bit generator based on cross-over chaotic map and its application in image encryption;Multimedia Tools and Applications;2024-03-08

2. A Novel Quantum Algorithm for Solving Optimization Problems in Electrical Engineering;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3