Using Deep Learning to Detect the Need for Forest Thinning: Application to the Lungau Region, Austria

Author:

Satlawa Philipp1ORCID,Fisher Robert B.2ORCID

Affiliation:

1. Walter Group, 14 Iz nö-Süd Straße, 142351 Wiener Neudorf, Austria

2. School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK

Abstract

Timely information about the need to thin forests is vital in forest management to maintain a healthy forest while maximizing income. Currently, very-high-spatial-resolution remote sensing data can provide crucial assistance to experts when evaluating the maturity of thinnings. Nevertheless, this task is still predominantly carried out in the field and demands extensive resources. This paper presents a deep convolutional neural network (DCNN) to detect the necessity and urgency of carrying out thinnings using only remote sensing data. The approach uses very-high-spatial-resolution RGB and near-infrared orthophotos; a canopy height model (CHM); a digital terrain model (DTM); the slope; and reference data, which, in this case, originate from spruce-dominated forests in the Austrian Alps. After tuning, the model achieves an F1 score of 82.23% on our test data, which indicates that the model is usable in a practical setting. We conclude that DCNNs are capable of detecting the need to carry out thinnings in forests. In contrast, attempts to assess the urgency of the need for thinnings with DCNNs proved to be unsuccessful. However, additional data, such as age or yield class, have the potential to improve the results. Our investigation into the influence of each individual input feature shows that orthophotos appear to contain the most relevant information for detecting the need for thinning. Moreover, we observe a gain in performance when adding the CHM and slope, whereas adding the DTM harms the model’s performance.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference66 articles.

1. A heuristic approach to modelling thinnings;Daume;Silva Fenn.,2000

2. Stem growth responses in Douglas-fir and sitka spruce following thinning: Implications for assessing wind-firmness;Mitchell;For. Ecol. Manag.,2000

3. Betriebswirtschaftliche Modelluntersuchungen zu Z-Baum orientierten Produktionsstrategien in der Fichtenwirtschaft;Mitteilungen Der Forstl. Vers.- Und Forschungsanstalt Baden-WüRttemberg,1991

4. Massen-, Sorten-und Wertertrag der Fichte in Abhangigkeit von der Bestandesbehandlung;Spellmann;Forst Und Holz,2003

5. Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production;Hynynen;For. Ecol. Manag.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3