Predicting Online Item-Choice Behavior: A Shape-Restricted Regression Approach

Author:

Nishimura Naoki1ORCID,Sukegawa Noriyoshi2ORCID,Takano Yuichi3ORCID,Iwanaga Jiro4

Affiliation:

1. Product Development Management Office, Recruit Co., Ltd., Tokyo 100-6640, Japan

2. Faculty of Science and Engineering, Hosei University, Tokyo 184-8584, Japan

3. Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba 305-8573, Japan

4. Erdos Inc., Yokohama 222-0033, Japan

Abstract

This paper examines the relationship between user pageview (PV) histories and their itemchoice behavior on an e-commerce website. We focus on PV sequences, which represent time series of the number of PVs for each user–item pair. We propose a shape-restricted optimization model that accurately estimates item-choice probabilities for all possible PV sequences. This model imposes monotonicity constraints on item-choice probabilities by exploiting partial orders for PV sequences, according to the recency and frequency of a user’s previous PVs. To improve the computational efficiency of our optimization model, we devise efficient algorithms for eliminating all redundant constraints according to the transitivity of the partial orders. Experimental results using real-world clickstream data demonstrate that our method achieves higher prediction performance than that of a state-of-the-art optimization model and common machine learning methods.

Funder

University of Tsukuba and Toyota Motor Corporation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers;Algorithms;2024-01-10

2. Operating Range Estimation for Price Optimization;2023 IEEE International Conference on Data Mining Workshops (ICDMW);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3