A Maximum Value for the Kullback–Leibler Divergence between Quantized Distributions

Author:

Bonnici Vincenzo1ORCID

Affiliation:

1. Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 53/A (Campus Scienze e Tecnologie), 43124 Parma, Italy

Abstract

The Kullback–Leibler (KL) divergence is a widely used measure for comparing probability distributions, but it faces limitations such as its unbounded nature and the lack of comparability between distributions with different quantum values (the discrete unit of probability). This study addresses these challenges by introducing the concept of quantized distributions, which are probability distributions formed by distributing a given discrete quantity or quantum. This study establishes an upper bound for the KL divergence between two quantized distributions, enabling the development of a normalized KL divergence that ranges between 0 and 1. The theoretical findings are supported by empirical evaluations, demonstrating the distinct behavior of the normalized KL divergence compared to other commonly used measures. The results highlight the importance of considering the quantum value when applying the KL divergence, offering insights for future advancements in divergence measures.

Publisher

MDPI AG

Reference26 articles.

1. On information and sufficiency;Kullback;Ann. Math. Stat.,1951

2. A test for normality based on Kullback—Leibler information;Arizono;Am. Stat.,1989

3. Testing for homogeneity in mixture using weighted relative entropy;Li;Commun. Stat. Comput.,2008

4. Automatic detection of answer copying via Kullback-Leibler divergence and K-index;Belov;Appl. Psychol. Meas.,2010

5. Asymptotic normality of the posterior in relative entropy;Clarke;IEEE Trans. Inf. Theory,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3