Transformer Fault Diagnosis Utilizing Feature Extraction and Ensemble Learning Model

Author:

Xu Gonglin1ORCID,Zhang Mei1ORCID,Chen Wanli2ORCID,Wang Zhihui1

Affiliation:

1. College of Electrical and Information Engineering, Anhui University of Science and Technology (AUST), Huainan 232002, China

2. State Grid Jingning County Power Supply Company, Lishui 321400, China

Abstract

This paper proposes a novel method for diagnosing faults in oil-immersed transformers, leveraging feature extraction and an ensemble learning algorithm to enhance diagnostic accuracy. Initially, Dissolved Gas Analysis (DGA) data from transformers undergo a cleaning process to ensure data quality and reliability. Subsequently, an interactive ratio method is employed to augment features and project DGA data into a high-dimensional space. To refine the feature set, a combined Filter and Wrapper algorithm is utilized, effectively eliminating irrelevant and redundant features. The final step involves optimizing the Light Gradient Boosting Machine (LightGBM) model using IAOS algorithm for transformer fault classification; this model is an ensemble learning model. Experimental results demonstrate that the proposed feature extraction method enhances LightGBM model’s accuracy to 86.84%, representing a 6.58% improvement over the baseline model. Furthermore, optimization with IAOS algorithm increases the diagnostic accuracy of LightGBM model to 93.42%, an additional gain of 6.58%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference24 articles.

1. Transformer fault identification method based on hybrid sampling and IHBA-SVM;Xie;J. Electr. Measur. Instrument.,2022

2. Yang, L., Gao, L., Luo, X., Hao, Y., Zhang, Z., Jin, Y., and Zhang, J. (2024). An Improved Method for Fault Diagnosis of Oil-Immersed Transformers Based on Simulation Test Platform. IEEE Trans. Dielectr. Electr. Insul.

3. Novel Power Transformer Fault Diagnosis Using Optimized Machine Learning Methods;Taha;Intell. Autom. Soft Comp.,2021

4. Transformer fault prediction based on analysis of dissolved gas in oil;Chen;Electr. Measur. Technol.,2021

5. Fault diagnosis of oil-immersed power transformers using common vector approach;Kirkbas;Electr. Power Syst. Res.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3