What Is Your Favorite Gender, MLM? Gender Bias Evaluation in Multilingual Masked Language Models

Author:

Yu Jeongrok1,Kim Seong Ug1,Choi Jacob1ORCID,Choi Jinho D.1ORCID

Affiliation:

1. Department of Computer Science, Emory University, Atlanta, GA 30322, USA

Abstract

Bias is a disproportionate prejudice in favor of one side against another. Due to the success of transformer-based masked language models (MLMs) and their impact on many NLP tasks, a systematic evaluation of bias in these models is now needed more than ever. While many studies have evaluated gender bias in English MLMs, only a few have explored gender bias in other languages. This paper proposes a multilingual approach to estimating gender bias in MLMs from five languages: Chinese, English, German, Portuguese, and Spanish. Unlike previous work, our approach does not depend on parallel corpora coupled with English to detect gender bias in other languages using multilingual lexicons. Moreover, a novel model-based method is presented to generate sentence pairs for a more robust analysis of gender bias. For each language, lexicon-based and model-based methods are applied to create two datasets, which are used to evaluate gender bias in an MLM specifically trained for that language using one existing and three new scoring metrics. Our results show that the previous approach is data-sensitive and unstable, suggesting that gender bias should be assessed on a large dataset using multiple evaluation metrics for best practice.

Publisher

MDPI AG

Reference35 articles.

1. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (2017). Attention is All you Need. Advances in Neural Information Processing Systems, Curran Associates, Inc.

2. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019, January 2–7). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA.

3. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv.

4. Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D., and Kamar, E. (2022, January 22–27). ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection. Proceedings of the ACL 2022, Dublin, Ireland.

5. Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science;Bender;Trans. Assoc. Comput. Linguist.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3