MedicalCLIP: Anomaly-Detection Domain Generalization with Asymmetric Constraints

Author:

Hua Liujie1ORCID,Luo Yueyi2,Qi Qianqian3,Long Jun3

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. School of Mathematics and Statistics, Central South University, Changsha 410083, China

3. Big Data Institute, Central South University, Changsha 410083, China

Abstract

Medical data have unique specificity and professionalism, requiring substantial domain expertise for their annotation. Precise data annotation is essential for anomaly-detection tasks, making the training process complex. Domain generalization (DG) is an important approach to enhancing medical image anomaly detection (AD). This paper introduces a novel multimodal anomaly-detection framework called MedicalCLIP. MedicalCLIP utilizes multimodal data in anomaly-detection tasks and establishes irregular constraints within modalities for images and text. The key to MedicalCLIP lies in learning intramodal detailed representations, which are combined with text semantic-guided cross-modal contrastive learning, allowing the model to focus on semantic information while capturing more detailed information, thus achieving more fine-grained anomaly detection. MedicalCLIP relies on GPT prompts to generate text, reducing the demand for professional descriptions of medical data. Text construction for medical data helps to improve the generalization ability of multimodal models for anomaly-detection tasks. Additionally, during the text–image contrast-enhancement process, the model’s ability to select and extract information from image data is improved. Through hierarchical contrastive loss, fine-grained representations are achieved in the image-representation process. MedicalCLIP has been validated on various medical datasets, showing commendable domain generalization performance in medical-data anomaly detection. Improvements were observed in both anomaly classification and segmentation metrics. In the anomaly classification (AC) task involving brain data, the method demonstrated a 2.81 enhancement in performance over the best existing approach.

Funder

Systemically significant projects of China National Railway Group Co., I LTD

National Natural Science Foundation of China

National 745 Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

High-Performance Computing Center of Central South University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3