Comparative Analysis of Posiphen Pharmacokinetics across Different Species—Similar Absorption and Metabolism in Mouse, Rat, Dog and Human

Author:

Maccecchini Maria L.1,Mould Diane R.2

Affiliation:

1. Annovis Bio, Inc., 101 Lindenwood, Malvern, PA 193551, USA

2. Projections Research Inc., 535 Springview Lane, Phoenixville, PA 19460, USA

Abstract

Posiphen is a small molecule that exhibits neuroprotective properties by targeting multiple neurotoxic proteins involved in axonal transport, synaptic transmission, neuroinflammation, and cell death. Its broad-spectrum effects make it a promising candidate for treating neurodegenerative conditions, including Alzheimer’s and Parkinson’s diseases. Despite extensive investigation with animal models and human subjects, a comprehensive comparative analysis of Posiphen’s pharmacokinetics across studies remains elusive. Here, we address this gap by examining the metabolic profiles of Posiphen and its breakdown into two primary metabolites—N1 and N8—across species by measuring their concentrations in plasma, brain, and CSF using the LC-MS/MS method. While all three compounds effectively inhibit neurotoxic proteins, the N1 metabolite is associated with adverse effects. Our findings reveal the species-specific behavior of Posiphen, with both Posiphen and N8 being predominant in various species, while N1 remains a minor constituent, supporting the drug’s safety. Moreover, in plasma, Posiphen consistently showed fast clearance of all metabolites within 8 h in animal models and in human subjects, whereas in CSF or brain, the compound has an extended half-life of over 12 h. Combining all our human data and analyzing them by population pharmacokinetics showed that there are no differences between healthy volunteers, Alzheimer’s, and Parkinson’s patients. It also showed that Posiphen is absorbed and metabolized in a similar fashion across all animal species and human groups tested. These observations have critical implications for understanding the drug’s safety, therapeutic effect, and clinical translation.

Funder

Annovis Bio, Inc.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3