OptiNET—Automatic Network Topology Optimization

Author:

Maniatopoulos Andreas,Alvanaki Paraskevi,Mitianoudis NikolaosORCID

Abstract

The recent boom of artificial Neural Networks (NN) has shown that NN can provide viable solutions to a variety of problems. However, their complexity and the lack of efficient interpretation of NN architectures (commonly considered black box techniques) has adverse effects on the optimization of each NN architecture. One cannot simply use a generic topology and have the best performance in every application field, since the network topology is commonly fine-tuned to the problem/dataset in question. In this paper, we introduce a novel method of computationally assessing the complexity of the dataset. The NN is treated as an information channel, and thus information theory is used to estimate the optimal number of neurons for each layer, reducing the memory and computational load, while achieving the same, if not greater, accuracy. Experiments using common datasets confirm the theoretical findings, and the derived algorithm seems to improve the performance of the original architecture.

Publisher

MDPI AG

Subject

Information Systems

Reference40 articles.

1. Siu, K., Stuart, D.M., Mahmoud, M., and Moshovos, A. (October, January 30). Memory Requirements for Convolutional Neural Network Hardware Accelerators. Proceedings of the 2018 IEEE International Symposium on Workload Characterization (IISWC), Raleigh, NC, USA.

2. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., and Zhang, Z. (2015), January 7–12). MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. Proceedings of the Neural Information Processing Systems, Workshop on Machine Learning Systems, Montreal, QC, Canada.

3. Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., and Graves, A. (2016, January 5–10). Memory-Efficient Backpropagation Through Time. Proceedings of the NIPS’16: 30th International Conference on Neural Information Processing Systems, Barcelona Spain.

4. Diamos, G., Sengupta, S., Catanzaro, B., Chrzanowski, M., Coates, A., Elsen, E., Engel, J., Hannun, A., and Satheesh, S. (2016, January 19–24). Persistent RNNs: Stashing recurrent weights on-chip. Proceedings of the ICML’16: 33rd International Conference on International Conference on Machine Learning, New York, NY, USA.

5. Hagan, M., Demuth, H.B., Beale, M.H., and De Jesus, O. (2014). Neural Network Design, Martin Hagan. [2nd ed.]. Available online: https://hagan.okstate.edu/nnd.html.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3