Quantum-Inspired Evolutionary Algorithm for Optimal Service-Matching Task Assignment

Author:

Vendrell JoanORCID,Kia Solmaz

Abstract

This paper proposes a quantum-inspired evolutionary algorithm (QiEA) to solve an optimal service-matching task-assignment problem. Our proposed algorithm comes with the advantage of generating always feasible population individuals and, thus, eliminating the necessity for a repair step. That is, with respect to other quantum-inspired evolutionary algorithms, our proposed QiEA algorithm presents a new way of collapsing the quantum state that integrates the problem constraints in order to avoid later adjusting operations of the system to make it feasible. This results in lower computations and also faster convergence. We compare our proposed QiEA algorithm with three commonly used benchmark methods: the greedy algorithm, Hungarian method and Simplex, in five different case studies. The results show that the quantum approach presents better scalability and interesting properties that can be used in a wider class of assignment problems where the matching is not perfect.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3