The Impacts of the Freezing–Thawing Process on Benthic Macroinvertebrate Communities in Riffles and Pools: A Case Study of China’s Glacier-Fed Stream

Author:

Tian Yilin,Liu Yuwei,Gao Yingzhi,Cui Dong,Zhang Wei,Jiao Ziwei,Yao Fulong,Zhang Zhenxing,Yang Haijun

Abstract

Glacier-fed streams are one of the environments most sensitive to global climate change. However, the effects of the freezing–thawing process on benthic macroinvertebrate communities in different habitats of glacier-fed streams are unclear. In this paper, we investigated benthic macroinvertebrates in riffles and pools of a glacier-fed stream in Xinjiang, China, during the pre-freezing period (November, 2018), freezing period (January 2019), and thawing period (April, 2019). Our results showed that the freezing–thawing process resulted in a decline in benthic macroinvertebrate species richness and diversity, both of which were attributed to the effects of the freezing–thawing process on habitat stability, water quality, and cycling of the stream ecosystems. During the whole freezing–thawing process, the indicator taxa of riffles were Rhithrogena sp. and Baetis sp., while the only indicator taxon of pools was Chironomus sp. The species richness, Margalef diversity, and EPT richness (Ephemeroptera, Plecoptera, and Trichoptera) of benthic macroinvertebrates in riffles were higher than those in pools, due to the higher habitat heterogeneity in the riffles. However, the density in riffles was significantly lower than that in pools during the freezing period (p < 0.05). Additionally, pools were dominated by taxa with higher resilience and resistance traits, such as “bi- or multi-voltine”, “abundant occurrence in drift”, and “small size at maturity”. This result indicated that pools provide a temporary refuge for benthic macroinvertebrates in the extreme environment of glacier-fed streams. The freezing–thawing process plays an essential role in the formation of the structure and function of the stream ecosystem. Our results can help us to further understand the winter ecological process of headwater streams, and provide a reference for stream biodiversity conservation in cold regions.

Funder

National Natural Science Foundation of China

Scientific and Technological Aid Project of Science and Technology Department of Xin-jiang Uygur Autonomous Region

Program of Introducing Talents of Discipline to Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3