Groundwater Recharge Modeling under Water Diversion Engineering: A Case Study in Beijing

Author:

Zhao Mingyan,Meng Xiangbo,Wang Boxin,Zhang Dasheng,Zhao Yafeng,Li Ruyi

Abstract

The influence of surface water resource exploitation and utilization projects on groundwater has been widely studied. Surface water diversion projects lead to a reduction in river discharge, which changes the recharge of groundwater systems. In this study, the numerical simulation method is used to predict the variation in groundwater level under different diversion scale scenarios. The Zhangfang water diversion project in Beijing, China, was chosen for the case study. The downstream plain area of the Zhangfang water diversion project is modeled by MODFLOW to predict the influence of reducing water diversion on the dynamic change in the groundwater level in the downstream plain area. The model results show that the difference in groundwater recharge and discharge on the downstream plain of Zhangfang is 9,991,900 m3/a, which is in a negative water balance state, and the groundwater level continues to decrease. Reducing the amount of water diverted by the Zhangfang water diversion project to replenish groundwater is beneficial to the rise of the groundwater level in the downstream plain area. The results indicate that the groundwater flow model in the downstream plain area of Zhangfang performed well in the influence assessment of surface water resource exploitation and utilization projects on groundwater. This study also provides a good example of how to coordinate the relationship between surface water resources and groundwater resources.

Funder

Hebei Province Water Conservancy Science and Technology Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3