GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes

Author:

Daga Alessandro PaoloORCID,Garibaldi LuigiORCID

Abstract

The estimation of the Instantaneous Angular Speed (IAS) has in recent years attracted a growing interest in the diagnostics of rotating machines. Measurement of the IAS can be used as a source of information of the machine condition per se, or for performing angular resampling through Computed Order Tracking, a practice which is essential to highlight the machine spectral signature in case of non-stationary operational conditions. In these regards, the SURVISHNO 2019 international conference held at INSA Lyon on 8–10 July 2019 proposed a challenge about the estimation of the instantaneous non-stationary speed of a fan from a video taken by a smartphone, a pocket, low-cost device which can nowadays be found in everyone’s pocket. This work originated by the author to produce an offline motion-tracking of the fan (actually, of the head of its locking-screw) and obtaining then a reliable estimate of the IAS. The here proposed algorithm is an update of the established Template Matching (TM) technique (i.e., in the Signal Processing community, a two-dimensional matched filter), which is here integrated into a Genetic Algorithm (GA) search. Using a template reconstructed from a simplified parametric mathematical model of the features of interest (i.e., the known geometry of the edges of the screw head), the GA can be used to adapt the template to match the search image, leading to a hybridization of template-based and feature-based approaches which allows to overcome the well-known issues of the traditional TM related to scaling and rotations of the search image with respect to the template. Furthermore, it is able to resolve the position of the center of the screw head at a resolution that goes beyond the limit of the pixel grid. By repeating the analysis frame after frame and focusing on the angular position of the screw head over time, the proposed algorithm can be used as an effective offline video-tachometer able to estimate the IAS from the video, avoiding the need for expensive high-resolution encoders or tachometers.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference56 articles.

1. ANALYSIS OF COMPUTED ORDER TRACKING

2. Main principles and limitations of current order tracking methods;Brandt;Sound Vib.,2005

3. Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation)

4. Extraction of tacho information from a vibration signal for improved synchronous averaging;Coats;Acoustics,2009

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3