A Novel Blockchain and Bi-Linear Polynomial-Based QCP-ABE Framework for Privacy and Security over the Complex Cloud Data

Author:

Singamaneni Kranthi Kumar,Ramana KadiyalaORCID,Dhiman GauravORCID,Singh SaurabhORCID,Yoon ByungunORCID

Abstract

As a result of the limited resources available in IoT local devices, the large scale cloud consumer’s data that are produced by IoT related machines are contracted out to the cloud. Cloud computing is unreliable, using it can compromise user privacy, and data may be leaked. Because cloud-data and grid infrastructure are both growing exponentially, there is an urgent need to explore computational sources and cloud large-data protection. Numerous cloud service categories are assimilated into numerous fields, such as defense systems and pharmaceutical databases, to compute information space and allocation of resources. Attribute Based Encryption (ABE) is a sophisticated approach which can permit employees to specify a higher level of security for data stored in cloud storage facilities. Numerous obsolete ABE techniques are practical when applied to small data sets to generate cryptograms with restricted computational properties; their properties are used to generate the key, encrypt it, and decrypt it. To address the current concerns, a dynamic non-linear polynomial chaotic quantum hash technique on top of secure block chain model can be used for enhancing cloud data security while maintaining user privacy. In the proposed method, customer attributes are guaranteed by using a dynamic non- polynomial chaotic map function for the key initialization, encryption, and decryption. In the proposed model, both organized and unorganized massive clinical data are considered to be inputs for reliable corroboration and encoding. Compared to existing models, the real-time simulation results demonstrate that the stated standard is more precise than 90% in terms of bit change and more precise than 95% in terms of dynamic key generation, encipherment, and decipherment time.

Funder

National Research Foundation of Korea

Dongguk University Research Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3