Locust Inspired Algorithm for Cloudlet Scheduling in Cloud Computing Environments

Author:

Ala’anzy Mohammed AlaaORCID,Othman MohamedORCID,Hanapi Zurina MohdORCID,Alrshah Mohamed A.ORCID

Abstract

Cloud computing is an emerging paradigm that offers flexible and seamless services for users based on their needs, including user budget savings. However, the involvement of a vast number of cloud users has made the scheduling of users’ tasks (i.e., cloudlets) a challenging issue in selecting suitable data centres, servers (hosts), and virtual machines (VMs). Cloudlet scheduling is an NP-complete problem that can be solved using various meta-heuristic algorithms, which are quite popular due to their effectiveness. Massive user tasks and rapid growth in cloud resources have become increasingly complex challenges; therefore, an efficient algorithm is necessary for allocating cloudlets efficiently to attain better execution times, resource utilisation, and waiting times. This paper proposes a cloudlet scheduling, locust inspired algorithm to reduce the average makespan and waiting time and to boost VM and server utilisation. The CloudSim toolkit was used to evaluate our algorithm’s efficiency, and the obtained results revealed that our algorithm outperforms other state-of-the-art nature-inspired algorithms, improving the average makespan, waiting time, and resource utilisation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SRRA: A Novel Skewness-Based Algorithm for Cloudlet Scheduling;2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS);2023-10-22

2. Experimental Setup of Apache Spark Application Execution in a Standalone Cluster Environment using Default Scheduling Mode;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

3. An ANN based bidding strategy for resource allocation in cloud computing using IoT double auction algorithm;Sustainable Energy Technologies and Assessments;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3