Abstract
Soil microorganisms might be assessed for their capabilities of plant growth promotion in order to identify heat tolerant strategies for crop production. The planned study was conducted to determine the potential of heat tolerant plant growth promoting rhizobacteria (PGPR) in mitigating heat stress effects in tomato. Bacillus cereus was evaluated for plant growth promoting activities and assessed for 1-aminocyclopropane-1-carboxylate (ACC-deaminase) (0.76–C0.9 μM/mg protein/h), and exopolysaccharide (0.66–C0.91 mg/mL) under normal and heat stressed conditions. Plant growth regulators were evaluated through High Performance Liquid Chromatography. Bacterial inoculation effects on important physiological and biochemical parameters were evaluated under normal and heat stressed conditions in growth chamber. The morphological-physiological traits significantly revealed drastic effects on both of un-inoculated tomato varieties under heat stress conditions. Bacterial augmentation significantly promoted shoot, root length, leaf surface area, fresh and dry weight. Heat stress enhanced extracellular polymeric substances (EPS) production and cleavage of ACC into a-ketobutyrate and ammonia due to ACC-deaminase producing bacteria that significantly reduced the adverse effects of heat on tomato growth. In conclusion, the applied plant growth promoting rhizobacteria (PGPR) bacterial strain proved as potential candidate for improving tomato crop growing under heat stressed conditions. However, it is highly suggested to validate the current results by conducting field trials.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
156 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献