Thermo-Mechanical Regime of the Greenland Ice Sheet and Erosion Potential of the Crystalline Bedrock

Author:

Li Zhenze,Nguyen Thanh Son

Abstract

Past glaciation is known to have caused a substantial morphological change to high latitude regions of the northern hemisphere. In the assessment of the long-term performance of deep geological repositories for radioactive wastes, future glaciation is a critical factor to take into consideration. This study develops a thermal-mechanical model to investigate ice sheet thermal evolution and the impact on bedrock erosion. The model is based on comprehensive field data resulting from international collaborative research on the Greenland Analogue Project. The ice sheet model considers surface energy balance and basal heat flux, as well as the temperature-dependent flow of ice that follows Glen’s law. The ice-bedrock interface is treated with a mechanical contact model, which solves the relative velocity and predicts the abrasional erosion and meltwater flow erosion. The numerical model is calibrated with measured temperature profiles and surface velocities at different locations across the glacier cross-section. The erosion rate is substantially larger near the glacier edge, where channel flow erosion becomes predominant. The abrasional erosion rate is averaged at 0.006 mm/a, and peaks at regions near the ridge divide. The mean meltwater flow erosion rate in the study area is estimated to be about 0.12 mm/a for the melted base region.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference50 articles.

1. Long-Term Climate Change. Nuclear Waste Management Organization Report;Peltier,2011

2. Modelling of the hydro-mechanical response of sedimentary rocks of southern Ontario to past glaciations

3. The Greenland Analogue Project: Final Report;Claesson Liljedahl,2016

4. The Greenland Analogue Project: Data and Processes;Harper,2016

5. Experimental Researches on Long-Term Strength of Granite Gneiss

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3