Spectroscopic Studies of Synthetic and Natural Saponites: A Review

Author:

Kloprogge J. TheoORCID,Ponce Concepcion P.ORCID

Abstract

Saponite is a trioctahedral 2:1 smectite with the ideal composition MxMg3AlxSi4−xO10(OH,F)2.nH2O (M = interlayer cation). Both the success of the saponite synthesis and the determination of its applications depends on robust knowledge of the structure and composition of saponite. Among the routine characterization techniques, spectroscopic methods are the most common. This review, thus, provides an overview of various spectroscopic methods to characterize natural and synthetic saponites with focus on the extensive work by one of the authors (JTK). The Infrared (IR) and Raman spectra of natural and synthetic saponites are discussed in detail including the assignment of the observed bands. The crystallization of saponite is discussed based on the changes in the IR and Raman spectra and a possible crystallization model is provided. Infrared emission spectroscopy has been used to study the thermal changes of saponite in situ including the dehydration and (partial) dehydroxylation up to 750 °C. 27Al and 29Si magic-angle-spinning nuclear magnetic resonance spectroscopy is discussed (as well as 11B and 71Ga for B- and Ga-Si substitution) with respect to, in particular, Al(IV)/Al(VI) and Si/Al(IV) ratios. X-ray photoelectron spectroscopy provides chemical information as well as some information related to the local environments of the different elements in the saponite structure as reflected by their binding energies.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3